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We study the dynamics of parallel tempering simulations, also known as the replica exchange technique,
which has become the method of choice for simulation of proteins and other complex systems. Recent results
for the optimal choice of the control parameter discretization allow a treatment independent of the system in
question. By analyzing mean first passage times across the control parameter space, we find an expression for
the optimal number of replicas in simulations covering a given temperature range. Our results suggest a
particular protocol to optimize the number of replicas in actual simulations.
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The effective simulation of proteins, glasses, and similar
complex systems has remained one of the defining chal-
lenges in computational physics. The main problem in such
simulations is slow relaxation due to barriers and bottle-
necks. Parallel tempering—also known as the replica ex-
change method—promised a way out of this dilemma �1–3�.
Here, canonical or generalized-ensemble simulations �4� are
performed in parallel at different values of a control param-
eter, most often the temperature. At certain times the current
conformations of replicas at neighboring control parameter
values are exchanged according to a generalized Metropolis
rule �5�. An individual replica performs a random walk in
control parameter space, allowing it to enter and escape local
free energy minima. As a consequence, the state space is
explored more evenly, especially, e.g., at low temperatures.

Replica exchange simulations are usually performed on
massively parallel machines, with one or more computing
nodes dedicated to performing the simulation of a replica at
a particular control parameter value. In order to optimize the
use of resources, an important question is whether an optimal
choice for the number of replicas—or, equivalently, control
parameter values �6�—exists, and how it might be deter-
mined. To our knowledge, no systematic investigation of this
particular problem has been done to date.

A likely reason is that this question is closely connected to
the metadynamics of parallel tempering, and a full under-
standing of this method for complex systems—exhibiting
broken ergodicity �7�—is still missing �11�. It is also not a
well-posed problem. Apart from the number of replicas, the
main adjustable parameter is the distribution of control pa-
rameter values. The optimal number of replicas will depend
strongly on the strategy used for the temperature discretiza-
tion. Usually, a constant discretization is employed. How-
ever, often bottlenecks exist in some control parameter re-
gions, and speeding up the equilibration of the system is
possible only by using a finer discretization in these regions.
In order to investigate the question of the optimal number of
replicas systematically, a method of discretization has to be
employed that also complies with some optimality criteria.

Major advances have been made recently in that direction.
Instead of concentrating on stationary distributions that arise
from sampling, Trebst et al. �8–10� have investigated the
flow across control parameter space and have provided an
iterative scheme for adjusting the discretization to optimize
the flow distribution. Subsequently, we have shown that op-
timizing the flow is equivalent to minimizing the total first
passage time to cross control parameter space �11�. In this
Rapid Communication, we use those previous results as a
basis for investigating the optimal number of replicas. We
restrict ourselves to the situation of optimized flow and de-
termine what number of control parameter values—identical
to the number of replicas—minimizes the first passage time
of a single replica.

In the following, we will consider parallel tempering with
N+1 replicas. Hence, we will assume N+1 different control
parameter values �0��1� ¯ ��N, i.e., we have N control
parameter intervals ��n ,�n+1�. We will also use the conven-
tions �0=�min and �N=�max. For simplicity we will call the
control parameter a �inverse� temperature in the rest of this
paper.

The time evolution of the probability P�n , t� that an indi-
vidual replica is at temperature �n at time t can be approxi-
mated by a master equation �12� in discrete time �11�,

P�n,t + 1� = P�n,t� � �1 − W��n → �n−1� − W��n → �n+1��

+ P�n − 1,t�W��n−1 → �n�

+ P�n + 1,t�W��n+1 → �n� , �1�

where W��→��� are transition probabilities between neigh-
boring temperatures. Of course, these probabilities depend
on those temperatures, and the master equation for replica
exchange is characterized by symmetric transition probabili-
ties,

W�� → ��� = W��� → �� � W��,��� = W���,�� . �2�

The relation between stationary flow J and first passage time
� in one-dimensional stochastic systems has been investi-
gated in the context of channel flow in Ref. �13�. The two
quantities are related via
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J = C/� , �3�

where C is a measure for the capacity of the channel. The
mean first passage time for a single replica to cross the sys-
tem defined by Eq. �1� in both directions is given by �11,14�

� = �N + 1��
i=0

N−1
1

W��i,�i+1�
, �4�

while the channel capacity is simply the number of tempera-
ture values C=N+1. It was shown in Ref. �11� that—for a
particular number of control parameter values—the current is
maximized �and therefore the first passage time minimized�
if the flow distribution is linear in the temperature number.
This criterion allows an optimization of the temperature dis-
tribution �10,11�. We will assume in the following that such
an optimized distribution of temperatures has been obtained.
In this case, the effective transition probabilities in Eq. �1�
are constant across the chain of temperatures �11�,

Wopt��i,�i+1� = const for i = 0, . . . ,N − 1, �5�

and this property will be essential in the analysis below.
With increasing number of temperatures, i.e., finer dis-

cretization, the transition probabilities approach their maxi-
mum W→W0. Its numerical value depends on the particular
implementation of the replica exchange algorithm and the
choice of the exchange time scale. In this limit, the mean first
passage time shows the asymptotic behavior

� � N2, �6�

i.e., it grows quadratically with number of replicas. However,
for smaller values of N the transition probabilities begin to
decrease, leading eventually again to an increase in � for
small N. We are interested in the value of N where � is
minimal.

This value will depend on the change of the transition
probabilities with the control parameter interval �� ,���. For
the case of temperature as the control parameter, this ques-
tion has been investigated in depth �11,17–20�. It has been
found that the transition probability can be effectively ap-
proximated by �11,19–21�

W��,��� � W0f� 	� − ��	
b


 , �7�

with f�x� a monotonically decreasing function obeying f�0�
=1. The important quantity here is b�0, denoting the scale
of inverse temperatures over which the transition probability
decreases. This scale is usually inverse to the widths of the
thermal equilibrium energy distributions at � and ��. It de-
creases monotonically with system size and with the exten-
sive heat capacity. In particular, it will be small near phase
transitions. More details can be found in Refs. �11,17–20�.

In the following, we assume that for a particular system
the functional form in Eq. �7� is the same over the full tem-
perature range. The only dependence of W��i ,�i+1� on the
inverse temperature interval ��i ,�i+1� is through the corre-
sponding scale parameter that we denote by bi,i+1. Under this
assumption the requirement that—for the optimal tempera-
ture distribution—all effective transition probabilities are

constant, Eq. �5�, is equivalent to the condition that all indi-
vidual arguments are identical. Hence,

	�i+1 − �i	/bi,i+1 = const � r �8�

holds. Introducing the average scale b̄,

b̄ =
1

N
�
i=0

N−1

bi,i+1, �9�

it can be seen that the constant r has the property

rNb̄ = �max − �min. �10�

This property allows us to introduce the renormalized num-
ber of replicas:

� =
b̄

�max − �min
N , �11�

which, in turn, allows us to cast the mean first passage time
for a replica to cross the system into the parameter-free form

���� � �2/f�1

�

 . �12�

Minimizing � for a particular functional form f�x� of the
transition probability decrease will give us finally the opti-
mal number of replicas.

We analyze Eq. �12� using the following functional forms
for f�x�:

f�x� = �exp�− x� �a� ,

erfc���/4x� �b� ,

1 − x �c� .

 �13�

In order to ensure they are comparable, we chose f�0�=1
= f��0�, i.e., the initial slope is identical for all three forms.
Form �b� has actually been derived for temperature intervals
�11,19–21� and exhibits an exp�−x2� /x tail. It is the one most
likely to occur in an actual situation. We have included forms
�a� and �c� as worst case scenarios since they cover a wide
range of behavior around �b�: �a� exhibits a simple exponen-
tial decrease, much slower than �b�, while �c� exhibits a
much faster, linear decrease; note that the latter is valid only
for x�1. Figure 1 shows a graphical comparison of the three
functions.

Minimizing Eq. �12� gives the optimal value for �,

�opt = �1/2 �a� ,

1.052 67 �b� ,

3/2 �c� .

 �14�

These values are all of order 1, despite the wide range of
functional behavior of the transition probability decrease
they describe. Rewriting Eq. �11�, we obtain our final result
for the optimal number of replicas:

Nopt = �opt��max − �min�/b̄ . �15�

The ratio of the full temperature range of the simulation to

the average scale b̄ is the main determining quantity in that
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equation. In particular, it controls the order of magnitude for
Nopt. Particular functional forms for the distance dependence
of the transition probabilities appear to have less influence
since �opt is of O�1� only. Although the range of values given
in Eq. �14� for �opt is still covered by a factor of 3, this is a
worst case scenario, and actual values for realistic functional
forms will be closer to �14� case �b�.

The influence of the different functions, Eq. �13�, is more
important for the form of the minimum of the mean first
passage time. Figure 2 shows how the mean first passage
time changes when the number of replicas N deviates from
the optimal value Nopt. In order to enable comparison we use
the renormalized replica number, Eq. �11�, as variable here.
While the minimum is pronounced for all functional forms, it
is steepest for form �c�, i.e., the fastest decreasing probability
function, and most shallow for form �a�.

Before we discuss the consequences of Eq. �15� for pro-
tocols to optimize the number of replicas, we need to address
some subtleties of the above derivation that we skipped over
in favor of a compact derivation.

�i� Equation �1� is an effective description of the long-
time properties of the random walk of replicas in parallel
tempering simulations. The transition probabilities for such a

long-time description differ from observed acceptance rates,
which are, on the replica exchange time scale, short-time
properties. In particular, it has been noted that for optimized
flow the observed acceptance rates are not constant �10�.
This is due to broken ergodicity �7� at particular control pa-
rameter values, which gives rise to a hierarchical, treelike
structure for the random walk of replicas �11�. Observed flow
and acceptance rates are just projections onto the one-
dimensional chain of control parameter values of the more
complicated flow processes on the tree. However, the possi-
bility of flow optimization shows that for the long-time tran-
sition probabilities the property �5� holds nevertheless. Such
discrepancies between short-time and long-time properties of
stochastic processes are well known �15,16�. By using Eq.
�7� we implicitly assume that those effective transition prob-
abilities exhibit the same qualitative behavior with control
parameter difference as was derived for the short-time tran-
sition probabilities. We feel that this is justified since our
qualitative results for Nopt, Eq. �15�, are independent of the
particular functional form.

�ii� J and � differ by a factor of N+1; see Eq. �3�. The
mean first passage time is usually a good estimate for the
lowest eigenvalue of the equation system �1�, i.e., it deter-
mines the time scale of equilibration �15,16�. Since we are
interested in fast equilibration, � is a more adequate quantity
than J to use for comparing systems with different numbers
of replicas and to optimize with respect to N.

�iii� We have omitted a discussion of the replica exchange
time scale. Depending on the frequency of replica exchange
moves, the time scale of Eq. �1� may differ by a factor of N.
However, our result �15� is stable with respect to changes in
the power of N. Although the particular numerical values
change, the value of �opt remains an O�1� constant if the
exponent in Eq. �12� changes from 2 to 1
��opt=1 ,1.6671,2� or 3 ��opt=1 /3,0.820 024,4 /3�.

What are the consequences of our results, particularly of
Eq. �15�, for protocols to optimize the number of replicas?
The main result of Eq. �15� is that it identifies, separates, and
quantifies the contributions of various properties of the simu-
lation system to the optimal number of replicas. In particular,
it exhibits the quantitative hierarchy of the individual contri-
butions. The above analysis also shows the importance of
how transition probabilities change with the control param-
eter interval. To our surprise, for the inverse temperature as
the control parameter, this complex contribution could be

summarized formally into the averaged scale b̄, Eq. �9�. Tak-
ing into account the dependence of the scales bi,i+1 on the
extensive properties of a system �11,19,20� suggests that Nopt
scales with system size V as Nopt��V. Corrections due to
anomalous scaling in the critical region might occur, though.

We note that the determination of b̄ in actual simulations
is by no means simple. Since it is defined for the situation of
optimal control parameter spacing for a particular number of
replicas, such an optimization would have to be performed
beforehand. Also, since it describes the behavior of the effec-
tive transition probabilities �see the above discussion�, it
would have to be determined from the flow distribution to-
gether with the actual first passage time, upon slightly vary-
ing the discretization.
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FIG. 1. Different functional forms for the decay of the transition
probability with control parameter distance; compare Eqs. �7� and
�13�.
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FIG. 2. Dependence of relative mean first passage time, Eq.
�12�, on deviations from the optimal number of replicas for the
different functions of Eq. �13�.
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Instead, our analysis suggests that the direct approach to
optimizing the number of replicas is the most promising one.
Comparing first passage times of replicas to cross the simu-
lation system for the optimized discretization is readily pos-
sible for different values of N. Figure 2, in particular form
�b�, can then be used as a guideline to extrapolate to Nopt.

In summary, we have studied the dynamics of parallel
tempering simulations. By analyzing these dynamics, we
have determined the main factors influencing the optimal
number of replicas in such simulations and their quantitative

hierarchy. Since the evaluation of the essential term b̄, the

average scale of transition probability decrease, may need
costly computations, we propose to base optimizing the num-
ber of replicas on the generic behavior of a replica’s first
passage time to cross the simulation system given in Fig. 2.
The technique of replica exchange has become the method of
choice for the simulation of proteins and other complex sys-
tems. The above results add to its understanding, and we
believe they will also advance its practical use.
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